Ficool

Word count

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

Privacy policy Contact Wikipedia Code of Conduct Developers Statistics Cookie statement Terms of Use Desktop

Wikipedia

Search

History of Earth

Article Talk

Language

Download PDF

Watch

View source

For more detail of the geological history of Earth, see Geological history of Earth.

For more detail of the biological history of Earth, see History of life.

The natural history of Earth concerns the development of planet Earth from its formation to the present day.[1][2] Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geological change and biological evolution.

Earth's history with time-spans of the eons to scale. Ma means "million years ago".

The geological time scale (GTS), as defined by international convention,[3] depicts the large spans of time from the beginning of Earth to the present, and its divisions chronicle some definitive events of Earth history. Earth formed around 4.54 billion years ago, approximately one-third the age of the universe, by accretion from the solar nebula.[4][5][6] Volcanic outgassing probably created the primordial atmosphere and then the ocean, but the early atmosphere contained almost no oxygen. Much of Earth was molten because of frequent collisions with other bodies which led to extreme volcanism. While Earth was in its earliest stage (Early Earth), a giant impact collision with a planet-sized body named Theia is thought to have formed the Moon. Over time, Earth cooled, causing the formation of a solid crust, and allowing liquid water on the surface.

The Hadean eon represents the time before a reliable (fossil) record of life; it began with the formation of the planet and ended 4.0 billion years ago. The following Archean and Proterozoic eons produced the beginnings of life on Earth and its earliest evolution. The succeeding eon is the Phanerozoic, divided into three eras: the Palaeozoic, an era of arthropods, fishes, and the first life on land; the Mesozoic, which spanned the rise, reign, and climactic extinction of the non-avian dinosaurs; and the Cenozoic, which saw the rise of mammals. Recognizable humans emerged at most 2 million years ago, a vanishingly small period on the geological scale.

The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago,[7][8][9] during the Eoarchean Era, after a geological crust started to solidify following the earlier molten Hadean eon. There are microbial mat fossils such as stromatolites found in 3.48 billion-year-old sandstone discovered in Western Australia.[10][11][12] Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old metasedimentary rocks discovered in southwestern Greenland[13] as well as "remains of biotic life" found in 4.1 billion-year-old rocks in Western Australia.[14][15] According to one of the researchers, "If life arose relatively quickly on Earth … then it could be common in the universe."[14]

Photosynthetic organisms appeared between 3.2 and 2.4 billion years ago and began enriching the atmosphere with oxygen. Life remained mostly small and microscopic until about 580 million years ago, when complex multicellular life arose, developed over time, and culminated in the Cambrian Explosion about 538.8 million years ago. This sudden diversification of life forms produced most of the major phyla known today, and divided the Proterozoic Eon from the Cambrian Period of the Paleozoic Era. It is estimated that 99 percent of all species that ever lived on Earth, over five billion,[16] have gone extinct.[17][18] Estimates on the number of Earth's current species range from 10 million to 14 million,[19] of which about 1.2 million are documented, but over 86 percent have not been described.[20]

Earth's crust has constantly changed since its formation, as has life since its first appearance. Species continue to evolve, taking on new forms, splitting into daughter species, or going extinct in the face of ever-changing physical environments. The process of plate tectonics continues to shape Earth's continents and oceans and the life they harbor.

Eons

Geologic time scale

Solar System formation

Hadean and Archean Eons

Proterozoic Eon

Phanerozoic Eon

See also

Notes

References

Further reading

External links

Last edited 14 days ago by Monkbot

Wikipedia

Wikimedia Foundation

Powered by MediaWiki

Content is available under CC BY-SA 4.0 unless otherwise noted.

More Chapters